
Dynamic Programming

See Section 7.6,

pages 329-333 of Weiss

Question: There are some situations in which
recursion can be massively inefficient. For
example, the standard Fibonacci recursion

Fib(n) = Fib(n-1) + Fib(n-2)

computes the same values over and over. How
many times do you think the calculation of
Fib(40) computes the fact that Fib(4) = 3?

A. 36

B. 35+34

C. Hundreds of times

D. Thousands of times

Actually, the calculation of Fib(40) computes Fib(4)
over 24,000,000 times.

Sometimes we can keep the advantages of
recursion without this duplicated effort by just
making a table of results; if the recursive
function sees that a result has already been
computed, it returns this value instead of
recursing.

This technique goes by many names -- "function
caching" (i.e, creating a cache for the recursive
function), "memo-izing" (teaching the recursion
to write itself memos) and Dynamic
Programming, which is the preferred modern
term.

The following function assumes that we have
an array called Values. Since the Fibonacci
numbers are all non-negative, I initialized all of
the entries of Values to -1. Any non-negative
entry indicates an actual value of the Fib
function.

public static int Fib(int n) {
if (Values[n] >= 0)

return Values[n];
else if (n == 0)

return 0;
else if (n == 1)

return 1;
else {

int t = Fib(n-1) + Fib(n-2);
Values[n] = t;
return t;

}
}

Here is another example. Joe, because he didn’t
hand in his labs on time, is now working in a
warehouse stuffing widgets into boxes. Because
his company doesn't want to waste money on
packing material, the boxes must be filled
exactly to capacity. The available boxes have
capacities 25, 21, 10, 5, 1. Joe can use as many
of each size as necessary. How can he choose
boxes to minimize the number of boxes needed
for a given order?

Question: We have capacities 25 21 10 5 1. Do we
get the minimum number of boxes by always taking
the largest box we can? For example 30=25+5 and
that is better than 10+10+10 or 21+5+1+1+1+1.

A. Yes, taking the biggest box you can at each step
always gets the minimum number of boxes.

B. No; order size 20 is an example where that
doesn't work.

C. No; order size 43 is an example where that
doesn't work.

D. No; we wouldn't be talking about it if the
answer is yes.

Suppose someone orders 43 widgets. Joe could
pack them into

6 boxes, of sizes 25, 10, 5, 1, 1, 1

or 3 boxes of sizes 21, 21, 1.

The last of these is the best choice and that
doesn’t use a box of size 25.

Naturally, we want to write a function that takes in
an order size and computes both the minimum
number of boxes needed and which boxes should
be used.

I am going to assume that we have a box of size 1,
so there is always a solution. It is easy to make the
function slightly more complex to handle the no-
solution option if you don't like that assumption.

We will solve this problem in a sequence of
steps:

A. First we will find an easy recursion that
answers the question: How many boxes
are needed?

B. This recursion will be very inefficient,
like the Fibonacci function. We will turn
it into a Dynamic Program to eliminate
redundant calculations.

C. Finally, we will add a function that prints
the actual box sizes to use.

Suppose we have 15 items to pack and box sizes of 20,
10, 7, and 1. We can't use the largest box because it is
too big, so we really have only 3 options: use the box
of size 10, and find a way to pack the remaining 5
items efficiently; use a box of size 7 and find a way to
pack the remaining 8 items efficiently; or use a box of
size 1 and then pack the remaining 14 items.

Recursion can take the problem from there: to find the
minimum number of boxes for any number of items,
we loop through the possible sizes for the first box,
and then recurse to find the minimum number for the
remaining items. We return 1 plus the value of the
recursive call for the best choice.

What is our base case? We can't do better
than 1 box, so if we get a number of items that
fits exactly into one of the boxes, we return 1
without recursing.

Here is our code for the first step:

public static int NumBoxes(int items) {

for (int i = 0; i < BoxSizes.length; i++)
if (BoxSizes[i] == items)

return 1;
int min = items;
for (int j = 0; j < BoxSizes.length; j++) {

if (BoxSizes[j] < items) {
int t = 1+ NumBoxes(items-BoxSizes[j]);
if (t < min)

min = t;
}

}
return min;

}

It might look like NumBoxes only recurses once, but
that is because the recursive call is inside a loop. Each
call to NumBoxes recurses once for each box size. If
there are 10 different boxes, this could be even more
inefficient than the Fibonacci function.

We will turn this into a Dynamic Program the same way
we handled the Fibonacci function -- keeping an array
(which we'll call Counts) that holds values of NumBoxes
as we find them.

We can use the Java initialization of 0 since any
assignment we will make to this array will be strictly
positive.

We will start our call to NumBoxes by checking
whether the argument has a non-zero entry in
Counts. We can avoid the base cases if we just
initialize the Counts entry for each box size to 1,
since we can't do any better than putting the
items into one box.

Here is the resulting function:

public static int NumBoxes(int items) {
if (Counts[items] > 0)

return Counts[items];
int min = items;
for (int j = 0; j < BoxSizes.length; j++) {

if (BoxSizes[j] < items) {
int t = 1+ NumBoxes(items-BoxSizes[j]);
if (t < min)

min = t;
}

}
Counts[items] = min;
return min;

}

The only step left is finding the actual boxes to use to
achieve the minimum we have calculated. We could
build up a string or list of the right boxes as we go, but
the code for that becomes obtuse. An easier solution is
to just store the last box we used to achieve its
minimum. For example, if we have 15 items to pack
and we just chose to use a box that holds 7 of these
items, then we must have already found a solution to
the problem of packing 8 boxes. So we print our size 7,
then go down to the last box we chose to pack 8 items.
This was also a 7, so we print that and go down to the
entry for 1 item, which of course is a box of size 1.
Altogether we print 7 7 1, only storing one box for each
number of items.

Here is the final version of NumBoxes:
public static int NumBoxes(int items) {

if (Counts[items] > 0)
return Counts[items];

int min = items;
int bestBox = 1;
for (int j = 0; j < BoxSizes.length; j++) {

if (BoxSizes[j] < items) {
int t = 1+ NumBoxes(items-BoxSizes[j]);
if (t < min) {

min = t;
bestBox = BoxSizes[j];

}
}

}
Counts[items] = min;
LastBox[items] = bestBox;
return min;

}

Here's how we print a solution after the LastBox array is filled
out:

public static void Print(int items) {
while (items > 0) {

System.out.printf("%d ", LastBox[items]);
items -= LastBox[items];

}
System.out.println();

}

The initialization code is

Counts = new int[50]; // or maximum problem size
LastBox = new int[50];
for (int i = 0; i < BoxSizes.length; i++) {

int size = BoxSizes[i];
Counts[size] = 1;
LastBox[size] = size;

}

