
Dynamic Programming

See Section 7.6, 

pages 329-333 of Weiss



Question: There are some situations in which 
recursion can be massively inefficient.  For 
example, the standard Fibonacci recursion

Fib(n) = Fib(n-1) + Fib(n-2)

computes the same values over and over.  How 
many times do you think the calculation of 
Fib(40) computes the fact that Fib(4) = 3?

A. 36

B. 35+34

C. Hundreds of times

D. Thousands of times



Actually, the calculation of Fib(40) computes Fib(4) 
over 24,000,000 times. 



Sometimes we can keep the advantages of 
recursion without this duplicated effort by just 
making a table of results; if the recursive 
function sees that a result has already been 
computed, it returns this value instead of 
recursing.   



This technique goes by many names -- "function 
caching" (i.e, creating a cache for the recursive 
function), "memo-izing" (teaching the recursion 
to write itself memos) and Dynamic 
Programming, which is the preferred modern 
term.



The following function assumes that we have 
an array called Values.  Since the Fibonacci 
numbers are all non-negative, I initialized all of 
the entries of Values to -1.  Any non-negative 
entry indicates an actual value of the Fib 
function.



public static int Fib(int n) {
if (Values[n] >= 0)

return Values[n];
else if (n == 0)

return 0;
else if (n == 1)

return 1;
else {

int t = Fib(n-1) + Fib(n-2);
Values[n] = t;
return t;

}
}



Here is another example.  Joe, because he didn’t 
hand in his labs on time, is now working in a 
warehouse stuffing widgets into boxes.  Because 
his company doesn't want to waste money on 
packing material, the boxes must be filled 
exactly to capacity.   The available boxes have 
capacities 25, 21, 10, 5, 1.  Joe can use as many 
of each size as necessary.  How can he choose 
boxes to minimize the number of boxes needed 
for a given order?



Question: We have capacities 25 21 10 5 1. Do we 
get the minimum number of boxes by always taking 
the largest box we can? For example 30=25+5 and 
that is better than 10+10+10 or 21+5+1+1+1+1.

A. Yes, taking the biggest box you can at each step 
always gets the minimum number of boxes.

B. No; order size 20 is an example where that 
doesn't work.

C. No; order size 43 is an example where that 
doesn't work.

D. No; we wouldn't be talking about it if the 
answer is yes.



Suppose someone orders 43 widgets.  Joe could 
pack them into 

6 boxes, of sizes 25, 10, 5, 1, 1, 1

or 3 boxes of sizes 21, 21, 1.

The last of these is the best choice and that 
doesn’t use a box of size 25. 



Naturally, we want to write a function that takes in 
an order size and computes both the minimum 
number of boxes needed and which boxes should 
be used.

I am going to assume that we have a box of size 1, 
so there is always a solution.  It is easy to make the 
function slightly more complex to handle the no-
solution option if you don't like that assumption.



We will solve this problem in a sequence of 
steps:

A. First we will find an easy recursion that 
answers the question: How many boxes 
are needed?

B. This recursion will be very inefficient, 
like the Fibonacci function.  We will turn 
it into a Dynamic Program to eliminate 
redundant calculations.

C. Finally, we will add a function that prints 
the actual box sizes to use. 



Suppose we have 15 items to pack and box sizes of 20, 
10, 7, and 1.  We can't use the largest box because it is 
too big, so we really have only 3 options: use the box 
of size 10, and find a way to pack the remaining 5 
items efficiently; use a box of size 7 and find a way to 
pack the remaining 8 items efficiently; or use a box of 
size 1 and then pack the remaining 14 items.   

Recursion can take the problem from there: to find the 
minimum number of boxes for any number of items, 
we loop through the possible sizes for the first box, 
and then recurse to find the minimum number for the 
remaining items.  We return 1 plus the value of the 
recursive call for the best choice.



What is our base case?  We can't do better 
than 1 box, so if we get a number of items that 
fits exactly into one of the boxes, we return 1 
without recursing.



Here is our code for the first step:

public static int NumBoxes( int items) {

for (int i = 0; i < BoxSizes.length; i++)
if (BoxSizes[i] == items) 

return 1;
int min = items;
for (int j = 0; j < BoxSizes.length; j++) {

if (BoxSizes[j] < items) {
int t = 1+ NumBoxes(items-BoxSizes[j]);
if (t < min) 

min = t;
}

}
return min;

}



It might look like NumBoxes only recurses once, but 
that is because the recursive call is inside a loop.  Each 
call to NumBoxes recurses once for each box size.  If 
there are 10 different boxes, this could be even more 
inefficient than the Fibonacci function.

We will turn this into a Dynamic Program the same way 
we handled the Fibonacci function -- keeping an array 
(which we'll call Counts) that holds values of NumBoxes
as we find them.  

We can use the Java initialization of 0 since any 
assignment we will make to this array will be strictly 
positive.



We will start our call to NumBoxes by checking 
whether the argument has a non-zero entry in 
Counts.  We can avoid the base cases if we just 
initialize the Counts entry for each box size to 1, 
since we can't do any better than putting the 
items into one box.



Here is the resulting function:

public static int NumBoxes( int items) {
if (Counts[items] > 0)

return Counts[items];
int min = items;
for (int j = 0; j < BoxSizes.length; j++) {

if (BoxSizes[j] < items) {
int t = 1+ NumBoxes(items-BoxSizes[j]);
if (t < min) 

min = t;
}

}
Counts[items] = min;
return min;

}



The only step left is finding the actual boxes to use to 
achieve the minimum we have calculated.  We could 
build up a string or list of the right boxes as we go, but 
the code for that becomes obtuse.  An easier solution is 
to just store the last box we used to achieve its 
minimum.  For example, if we have 15 items to pack 
and we just chose to use a box that holds 7 of these 
items, then we must have already found a solution to 
the problem of packing 8 boxes.  So we print our size 7, 
then go down to the last box we chose to pack 8 items.  
This was also a 7, so we print that and go down to the 
entry for 1 item, which of course is a box of size 1.  
Altogether we print 7 7 1, only storing one box for each 
number of items.



Here is the final version of NumBoxes:
public static int NumBoxes( int items) {

if (Counts[items] > 0)
return Counts[items];

int min = items;
int bestBox = 1;
for (int j = 0; j < BoxSizes.length; j++) {

if (BoxSizes[j] < items) {
int t = 1+ NumBoxes(items-BoxSizes[j]);
if (t < min) {

min = t;
bestBox = BoxSizes[j];

}
}

}
Counts[items] = min;
LastBox[items] = bestBox;
return min;

}



Here's how we print a solution after the LastBox array is filled 
out:

public static void Print( int items ) {
while (items > 0) {

System.out.printf( "%d ", LastBox[items]);
items -= LastBox[items];

}
System.out.println();

}



The initialization code is

Counts = new int[50];  // or maximum problem size
LastBox = new int[50];
for (int i = 0; i < BoxSizes.length; i++ ) {

int size = BoxSizes[i];
Counts[size] = 1;
LastBox[size] = size;

}


